24 research outputs found

    Coding for Phase Change Memory Performance Optimization

    Get PDF
    Over the past several decades, memory technologies have exploited continual scaling of CMOS to drastically improve performance and cost. Unfortunately, charge-based memories become unreliable beyond 20 nm feature sizes. A promising alternative is Phase-Change-Memory (PCM) which leverages scalable resistive thermal mechanisms. To realize PCM's potential, a number of challenges, including the limited wear-endurance and costly writes, need to be addressed. This thesis introduces novel methodologies for encoding data on PCM which exploit asymmetries in read/write performance to minimize memory's wear/energy consumption. First, we map the problem to a distance-based graph clustering problem and prove it is NP-hard. Next, we propose two different approaches: an optimal solution based on Integer-Linear-Programming, and an approximately-optimal solution based on Dynamic-Programming. Our methods target both single-level and multi-level cell PCM and provide further optimizations for stochastically-distributed data. We devise a low overhead hardware architecture for the encoder. Evaluations demonstrate significant performance gains of our framework

    A Unified Framework for Multimodal Submodular Integrated Circuits Trojan Detection

    Full text link

    Hybrid heterogeneous energy supply networks

    Full text link
    Abstract—Efficient energy supply, storage, and distribution are key technical challenges for design and operation of electronic systems. In particular, energy supply is the most scarce resource and constraint for mobile embedded systems where the supply lifetime, cost, weight, size, and portability are major concerns. With the advent of newer electrical energy supply and storage technologies, energy supplies with differing energy/power storage densities, cost, size, and recycling abilities are becoming available. Efficient system design requires an exact matching between the fluctuating load demands and the underlying energy resources. Combining the energy supplies in a hierarchical way creates a unique opportunity for efficient matching and variable load serving. Such a heterogeneous hybrid network of energy supply components could address a variety of power needs and serve a much broader range of system loads with a high efficiency. This paper presents a Hierarchial Architecture of Heterogenous Electrical Energy Supplies (HierArcHEES) that can be tuned to different load demands. I

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load

    Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification

    Full text link
    Recent work has shown that language models' (LMs) prompt-based learning capabilities make them well suited for automating data labeling in domains where manual annotation is expensive. The challenge is that while writing an initial prompt is cheap, improving a prompt is costly -- practitioners often require significant labeled data in order to evaluate the impact of prompt modifications. Our work asks whether it is possible to improve prompt-based learning without additional labeled data. We approach this problem by attempting to modify the predictions of a prompt, rather than the prompt itself. Our intuition is that accurate predictions should also be consistent: samples which are similar under some feature representation should receive the same prompt prediction. We propose Embroid, a method which computes multiple representations of a dataset under different embedding functions, and uses the consistency between the LM predictions for neighboring samples to identify mispredictions. Embroid then uses these neighborhoods to create additional predictions for each sample, and combines these predictions with a simple latent variable graphical model in order to generate a final corrected prediction. In addition to providing a theoretical analysis of Embroid, we conduct a rigorous empirical evaluation across six different LMs and up to 95 different tasks. We find that (1) Embroid substantially improves performance over original prompts (e.g., by an average of 7.3 points on GPT-JT), (2) also realizes improvements for more sophisticated prompting strategies (e.g., chain-of-thought), and (3) can be specialized to domains like law through the embedding functions.Comment: 38 pages, 22 figures, 8 table
    corecore